Sunday, January 14, 2007
Astrophysics: Gas giants form quickly
Gas-giant planets like Jupiter and Saturn form soon after their stars do, according to new research.
Observations from NASA's Spitzer Space Telescope show that gas giants either form within the first 10 million years of a sun-like star's life, or not at all. The study offers new evidence that gas-giant planets must form early in a star's history. The lifespan of sun-like stars is about 10 billion years.
Ilaria Pascucci of the University of Arizona Steward Observatory in Tucson led a team of astronomers who conducted the most comprehensive search for gas around 15 different sun-like stars, most with ages ranging from 3 million to 30 million years.
The scientists used Spitzer's heat-seeking infrared eyes to search for warm gas in the inner portions of star systems, an area comparable to the zone between Earth and Jupiter in our own solar system.
In addition, Pascucci, team member Michael Meyer of the UA Steward Observatory and their colleagues probed for cold gas in the outer regions of these star systems with the Arizona Radio Observatory's 10-meter Submillimeter Telescope (SMT) on Mount Graham, Ariz. The outer zones of these star systems are analogous to the region around Saturn's orbit and beyond in our own solar system.
UA astronomers and their colleagues used the Arizona Radio Observatory's 10-meter Submillimeter Telescope on Mount Graham, Ariz., to probe cold gas in outer regions of other solar systems. For more about the SMT, visit the Website, http://aro.as.arizona.edu/(Photo: Dave Harvey)
All of the stars in the study – including those as young as a few million years – have less than 10 percent of Jupiter's mass in gas swirling around them, Pascucci said.
"This indicates that gas giant planets like Jupiter and Saturn have already formed in these young solar system analogs, or they never will," Meyer said.
Astronomers suspect that gas around a star may also be important for sending terrestrial, or rocky, planets like Earth into relatively circular orbits as they form. If Earth had a highly elliptical orbit rather than relatively circular one, its temperature swings would be so extreme that humans and other complex organisms might not have evolved.
Many of the sun-like star systems in the study don't currently contain enough gas to send developing rocky planets into circular orbit, Pascucci said. One possibility is that terrestrial planets around these stars have highly elliptical orbits that hinder the development of complex life. Another possibility is that some mechanism other than gas moves the terrestrial planets into circular orbits once they are fully formed. "Our observations tested only the effect of gas," Pascucci said.
Pascucci's paper was published in The Astrophysical Journal in November 2006 (see below). The astronomers are presenting a poster of their findings at the 209th meeting of the American Astronomical Society in Seattle, Washington. The observations were part of the Spitzer Legacy Science Program "Formation and Evolution of Planetary Systems" (FEPS).
Meyer, a co-author of the paper, is the principal investigator of the FEPS program.
The Jet Propulsion Laboratory manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech. JPL is a division of Caltech. Spitzer's infrared spectrograph was built by Cornell University, Ithaca, N.Y., its development was led by Jim Houck.
The Arizona Radio Observatory offices are centrally located in the Steward Observatory building on The University of Arizona campus in Tucson.
Source: University of Arizona January 8 2007
[Astronomy, Astrophysics] [Image Credit: NASA/JPL-Caltech/T. Pyle (SSC)]
-------
Based on the paper:
Formation and Evolution of Planetary Systems: Upper Limits to the Gas Mass in Disks around Sun-like Stars
We have carried out a sensitive search for gas emission lines at IR and millimeter wavelengths for a sample of 15 young Sun-like stars selected from our dust disk survey with Spitzer. We have used mid-IR lines to trace the warm (300-100 K) gas in the inner disk and millimeter transitions of CO to probe the cold (approx 20 K) outer disk. We report no gas line detections from our sample. Line flux upper limits are first converted to warm and cold gas mass limits using simple approximations allowing a direct comparison with values from the literature. We also present results from more sophisticated models following Gorti and Hollenbach that confirm and extend our simple analysis. These models show that the [S I] 25.23 micro-m line can set constraining limits on the gas surface density at the disk inner radius and traces disk regions up to a few AU. We find that none of the 15 systems have more than 0.04MJ of gas within a few AU from the disk inner radius for disk radii from 1 to approx 40 AU. These gas mass upper limits even in the eight systems younger than approx 30 Myr suggest that most of the gas is dispersed early. The gas mass upper limits in the 10-40 AU region, which is mainly traced by our CO data, are less than 2 M?. If these systems are analogs of the solar system, they either have already formed Uranus- and Neptune-like planets or will not form them beyond 100 Myr. Finally, the gas surface density upper limits at 1 AU are smaller than 0.01% of the minimum mass solar nebula for most of the sources. If terrestrial planets form frequently and their orbits are circularized by gas, then circularization occurs early.
Also see:
The Formation and Evolution of Planetary Systems: Placing Our Solar System in Context with Spitzer
Full Text (PDF)
We provide an overview of the Spitzer Legacy Program "Formation and Evolution of Planetary Systems" (FEPS) which was proposed in 2000, begun in 2001, and executed aboard the Spitzer Space Telescope between 2003 and 2006. This program exploits the sensitivity of Spitzer to carry out mid-infrared spectrophotometric observations of solar-type stars. With a sample of approx 328 stars ranging in age from approx 3 Myr to approx 3 Gyr, we trace the evolution of circumstellar gas and dust from primordial planet-building stages in young circumstellar disks through to older collisionally generated debris disks. When completed, our program will help define the time scales over which terrestrial and gas giant planets are built, constrain the frequency of planetesimal collisions as a function of time, and establish the diversity of mature planetary architectures.
In addition to the observational program, we have coordinated a concomitant theoretical effort aimed at understanding the dynamics of circumstellar dust with and without the effects of embedded planets, dust spectral energy distributions, and atomic and molecular gas line emission. Together with the observations, these efforts will provide astronomical context for understanding whether our Solar System - and its habitable planet - is a common or a rare circumstance. Additional information about the FEPS project can be found on the team website: feps.as.arizona.edu
-------
*About the Spitzer Space Telescope:
The Spitzer Space Telescope (formerly SIRTF, the Space Infrared Telescope Facility) was launched into space by a Delta rocket from Cape Canaveral, Florida on 25 August 2003. During its 2.5-year mission, Spitzer will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space between wavelengths of 3 and 180 microns (1 micron is one-millionth of a meter). Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
Consisting of a 0.85-meter telescope and three cryogenically-cooled science instruments, Spitzer is the largest infrared telescope ever launched into space. Its highly sensitive instruments give us a unique view of the Universe and allow us to peer into regions of space which are hidden from optical telescopes. Many areas of space are filled with vast, dense clouds of gas and dust which block our view. Infrared light, however can penetrate these clouds, allowing us to peer into regions of star formation, the centers of galaxies, and into newly forming planetary systems. Infrared also brings us information about the cooler objects in space, such as smaller stars which are too dim to be detected by their visible light, extrasolar planets, and giant molecular clouds. Also, many molecules in space, including organic molecules, have their unique signatures in the infrared.
Because infrared is primarily heat radiation, the telescope must be cooled to near absolute zero (-459 degrees Fahrenheit or -273 degrees Celsius) so that it can observe infrared signals from space without interference from the telescope's own heat. Also, the telescope must be protected from the heat of the Sun and the infrared radiation put out by the Earth. To do this, Spitzer carries a solar shield and will be launched into an Earth-trailing solar orbit. This unique orbit places Spitzer far enough away from the Earth to allow the telescope to cool rapidy without having to carry large amounts of cryogen (coolant). This innovative approach has significantly reduced the cost of the mission.
Spitzer will be the final mission in NASA's Great Observatories Program - a family of four orbiting observatories, each observing the Universe in a different kind of light (visible, gamma rays, X-rays, and infrared). Other missions in this program include the Hubble Space Telescope (HST), Compton Gamma-Ray Observatory (CGRO), and the Chandra X-Ray Observatory(CXO). Spitzer is also a part of NASA's Astronomical Search for Origins Program, designed to provide information which will help us understand our cosmic roots, and how galaxies, stars and planets develop and form. [Source: NASA]
Technorati: gas, giant, planets, jupiter, saturn, form, stars, new, research, nasa, spitzer, space, telescope, giants, sun, evidence, lifespan, observatory, search, infrared, star, systems, astrophysics, astronomy, mass, ir, au, uranus, neptune, solar, evolution, system, earth, clouds, x-rays, hubble
Add to: CiteUlike | Connotea | Del.icio.us | Digg | Furl | Newsvine | Reddit | Yahoo